Symmetries and the quark model

4 Symmetries are a central to our current understanding of particle physics. In )

this chapter, the concepts of symmetries and conservation laws are first intro-
duced in the general context of quantum mechanics and are then applied to the
quark model. The approximate light quark flavour symmetry is used to predict
the structure and wavefunctions of the lightest hadronic states. These wave-
functions are used to obtain predictions for the masses and magnetic moments
of the observed baryons. The discussion of the quark model provides an intro-
duction to the algebra of the SU(2) and SU(3) symmetry groups that play a
central rdle in the Standard Model. No prior knowledge of group theory is
assumed; the required properties of the SU(2) and SU(3) symmetry groups

9 are obtained from first principles.

9.1 Symmetries in quantum mechanics

207

In both classical and quantum physics, conservation laws are associated with sym-
metries of the Hamiltonian. For particle physics it is most natural to introduce these
ideas in the context of quantum mechanics. In quantum mechanics, a symmetry of
the Universe can be expressed by requiring that all physical predictions are invari-
ant under the wavefunction transformation

v -y = Uy,

where, for example, U could be the operator corresponding a finite rotation of
the coordinate axes. The requirement that all physical predictions are unchanged
by a symmetry transformation, constrains the possible form of U. A necessary
requirement is that wavefunction normalisations are unchanged, implying

Wiy = W'y = OplOy) = WU Uly).

From this it can be concluded that the operator corresponding to any acceptable
symmetry transformation in quantum mechanics must be unitary

070 =1,
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where [ represents unity (which could be 1 or the identity matrix). Furthermore, for
physical predications to be unchanged by a symmetry operation, the eigenstates of
the system also must be unchanged by the transformation. Hence the Hamiltonian
itself must possess the symmetry in question, H — A’ = H. The eigenstates of the
Hamiltonian satisfy

Hy; = E,

and because of the invariance of the Hamiltonian, the energies of the transformed
eigenstates i will be unchanged,

H'y; = Ay; = Ey.
Since ) = Uy, this implies
HUy; = E;Uy; = UEy,; = URy,.

Therefore, for all states of the system, HU Wi = UH ¥, and it can be concluded that
U commutes with the Hamiltonian

[A.0]= A0 - 0R =0,

Hence, for each symmetry of the Hamiltonian there is a corresponding unitary
operator which commutes with the Hamiltonian.

A finite continuous symmetry operation can be built up from a series of infinites-
imal transformations of the form

Ue) = I + ieG,

where € is an infinitesimally small parameter and G is called the generator of the
transformation. Since U is unitary,

U)UT(e) = U + ieG)I — ieGT) = I + ie(G — GT) + O(€>).

For this infinitesimal transformation terms of O(e?) can be neglected, and therefore
the requirement that U U = I implies that

G=G"

Thus, for each symmetry of the Hamiltonian there is a corresponding unitary sym-
metry operation with an associated Hermitian generator G. The eigenstates of a
Hermitian operator are real and therefore the operator G is associated with an
observable quantity G. Furthermore, since U commutes with the Hamiltonian,
[FI A+ ieé] = 0, the generator G also must commute with the Hamiltonian,

[H, G] = 0.
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IP quantum mechanics the time evolution of the expectation value of the operator
G is given by (2.29),
9y =i(|a.cl),
dr
and because here G commutes with the Hamiltonian,
d A
&(G) =0.

Hence, for each symmetry of the Hamiltonian, there is an associated observable
conserved quantity G. Thus in quantum mechanics, symmetries are associated
with conservation laws and vice versa. This profound statement is not restricted
to quantum mechanics, in classical dynamics symmetries of the Hamiltonian also
correspond to conserved quantities. The relationship between symmetries and con-
servation laws is an expression of Noether’s theorem, which associates a symmetry
of the Lagrangian with a conserved current (see, for example, Appendix E).

Translational invariance

As an example of the above arguments, consider the simple case of translational
invariance in one dimension. The Hamiltonian for a system of particles depends
only on the velocities and the relative distances between particles and therefore
does not change if all particles are translated by the same infinitesimal distance e,

X —> X+ E€.

The corresponding wavefunction transformation is

Y(x) = ¢'(x) = Y(x + e).

Performing a Taylor expansion of y/(x) in terms of € gives

0
V0 =+ =40 + e+ 0@

For this infinitesimal transformation, the terms of O(e?) can be dropped, giving

, 0
' (x) = (1 + 66_) Y(x). 9.1
X
This can be expressed in terms of the quantum-mechanical momentum operator,
5o 0
Px="150

giving

¥'(x) = (1 +iepy(x).



210

Symmetries and the quark model

Comparison with (9.1) shows that the generator of the symmetry transformation,
X — X + €, is the quantum-mechanical momentum operator p,. Hence, the transla-
tional invariance of Hamiltonian implies momentum conservation.

In general, a symmetry operation may depend on more than one parameter, and
the corresponding infinitesimal unitary operator can be written in terms of the set
of generators G= (G},

U=1+ie-G,

where € = {¢;}. For example, an infinitesimal three-dimensional spatial translation
X — X + € can be associated with the generators p = (py, p,, p;) with

Ue) =1 +ie-p = 1+iepy+iepy,+ep..

9.1.1 Finite transformations

Any finite symmetry transformation can be expressed as a series of infinitesimal
transformations using

n 1oAY
U(a) = lim (1 +i-a- G) =exp (ia - G).

n—oo n

For example, consider the finite translation x — x+xo in one dimension. The corre-
sponding unitary operator, expressed in terms of the generator of the infinitesimal
translation p,, is

N Lo 9]
U(xp) = exp (ixopx) = exp (xoa—).
X

Hence for this finite translation, wavefunctions transform according to

A 0
' (x) = Ug(x) = exp (xoa)l//(X)

o Xt 6
—(l+x()a+5@+---)tﬁ(x)

:l//(x)+)€()a—+——+---,

which is just the usual Taylor expansion for ¢/(x + x¢), and therefore U(xo) results
in the transformation

Y(x) = ' (x) = Ulxo)ly = ¥(x + xo),

as required.



M

9.2 Flavour symmetry

9.2 Flavour symmetry
|

In the early days of nuclear physics, it was realised that the proton and neutron have
very similar masses and that the nuclear force is approximately charge independent.
In other words, the strong force potential is the same for two protons, two neutrons
or a neutron and a proton

Vop ® Vip ® Vin.

Heisenberg suggested that if you could switch off the electric charge of the proton,
there would be no way to distinguish between a proton and a neutron. To reflect
this observed symmetry of the nuclear force, it was proposed that the neutron and
proton could be considered as two states of a single entity, the nucleon, analogous
to the spin-up and spin-down states of a spin-half particle,

(8] ()

This led to the introduction of the idea of isospin, where the proton and neutron
form an isospin doublet with total isospin / = 1/2 and third component of isospin
I = +1/2. The charge independence of the strong nuclear force is then expressed
in terms of invariance under unitary transformations in this isospin space. One
such transformation would correspond to replacing all protons with neutrons and
vice versa. Physically, isospin has nothing to do with spin. Nevertheless, it will be
shown in the following section that isospin satisfies the same SU(2) algebra as spin.

9.2.1 Flavour symmetry of the strong interaction

The idea of proton/neutron isospin symmetry can be extended to the quarks. Since
the QCD interaction treats all quark flavours equally, the strong interaction pos-
sesses a flavour symmetry analogous to isospin symmetry of the nuclear force. For
a system of quarks, the Hamiltonian can be broken down into three components

FI = I:IO + I'AIstrong + ﬁem’ 9.2)

where Hj is the kinetic and rest mass energy of the quarks, and ﬂstrong and H.p,
are respectively the strong and electromagnetic interaction terms. If the (effective)
masses of the up- and down-quarks are the same, and H., is small compared to
ﬁstrong, then to a good approximation the Hamiltonian possesses an up—down (ud)
flavour symmetry; nothing would change if all the up-quarks were replaced by
down-quarks and vice versa. One simple consequence of an exact ud flavour sym-
metry is that the existence of a (uud) bound quark state implies that there will a

corresponding state (ddu) with the same mass.
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The above idea can be developed mathematically by writing the up- and down-
quarks as states in an abstract flavour space

(2] ()

If the up- and down-quarks were indistinguishable, the flavour independence of
the QCD interaction could be expressed as an invariance under a general unitary
transformation in this abstract space

(u’) A(u) Ui U || u

, | = U = .

d d Uz U )\ d

Since a general 2 X 2 matrix depends on four complex numbers, it can be described
by eight real parameters. The condition UUT = I, imposes four constraints; there-
fore a 2 X 2 unitary matrix can be expressed in terms of four real parameters or,

equivalently, four linearly independent 2 X 2 matrices representing the generators
of the transformation

U = eXp (ia/,-é,-).

One of the generators can be identified as

U—lo@ (9.3)
—Ole. .

This U(1) transformation corresponds to multiplication by a complex phase and is
therefore not relevant to the discussion of transformations between different flavour
states. The remaining three unitary matrices form a special unitary SU(2) group
with the property' det U = 1. The three matrices representing the Hermitian gener-
ators of the SU(2) group are linearly independent from the identity and are there-
fore traceless. A suitable choice” for three Hermitian traceless generators of the ud
flavour symmetry are the Pauli spin-matrices

(01 (0 —i and (1 0
15 1o0) 7{i o 7= o -1)
The ud flavour symmetry corresponds to invariance under SU(2) transformations
leading to three conserved observable quantities defined by the eigenvalues of Pauli

! The property detU = 1 follows from the properties of determinants, det UTU = detl =
det U det U = det U* det U = |det U> = 1. For the corresponding infinitesimal transformation to
be close to the identity, det U must equal +1.

The algebra of the SU(2) is determined by the commutation relations of the generators. The use of
the Pauli spin-matrices is purely conventional. An equally valid choice of the generators G; would
be STo;S where S is an arbitrary unitary matrix. The commutation relations are unchanged by
this redefinition, and thus the algebra of SU(2) does not depend on the specific representation of
the generators.
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spin-matrices. The algebra of the ud flavour symmetry is therefore identical to that
of spin for a spin-half particle. In analogy with the quantum-mechanical treatment
of spin-half particles, isospin T is defined in terms of the Pauli spin-matrices

1
T—20'.

Any finite transformation in the up—down quark flavour space can be written in
terms of a unitary transformation

such that

()= ()

where a - T = a1T) + axTy + a3T5. Hence, the general flavour transformation
is a “rotation” in flavour space, not just the simple interchange of up and down
quarks. A general unitary transformation in this isospin space would amount to
relabelling the up-quark as a linear combination of the up-quark and the down-
quark. If the flavour symmetry were exact, and the up- and down-quarks were
genuinely indistinguishable, this would be perfectly acceptable. However, because
the up- and down-quarks have different charges, it does not make sense to form
states which are linear combinations of the two, as this would lead to violations of
electric charge conservation. Consequently, the only physical meaningful isospin
transformation is that which corresponds to relabelling the states, u < d.

9.2.2 Isospin algebra

Whilst isospin has nothing to do with the physical property of spin, it has exactly
the same mathematical structure defined by the generators of the SU(2) symme-
try group. In the language of group theory the generators of SU(2) define a non-
Abelian (i.e. non-commuting) Lie algebra. The three generators of the group, which
correspond to physical observables, satisfy the algebra

[T], Tz] = iT3, [Tz, T3] = iTl and [T3, T]] = iTQ.

This is exactly the same set of commutators as found for the quantum mechanical
treatment of angular momentum, introduced in Section 2.3.5. Consequently, the
results obtained for angular momentum can be applied directly to the properties of
isospin. The total isospin operator,

8D A2 2 A2

T"=T{+T5+T1j3,
which commutes with each of the generators, is Hermitian and therefore also corre-
sponds to an observable quantity. Because the three operators 7, 7> and T3 do not
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The isospin one-half multiplet consisting of an up-quark and a down-quark.

T .
-O ® o>/

The isospin ladder operators step along the states in /5 within an isospin multiplet.

commute with each other, the corresponding observables cannot be known simul-
taneously (see Section 2.3.4). Hence, isospin states can be labelled in terms of the
total isospin / and the third component of isospin /3. These isospin states ¢(/, I3)
are the mathematical analogues of the angular momentum states |/, m) and have the
properties

T°¢ (. 1) =10+ Dp (. I;) and Ts¢(. 1) = 3¢ (1, 13).
In terms of isospin, the up-quark and down-quark are represented by
(L Z a1 1 _(O\_ (1 _1
u—(o)—¢(§,+§) and d—(l)—¢(§,—§)

The up- and down-quarks are the two states of an isospin one-half multiplet with
respective third components of isospin +% and —% as indicated in Figure 9.1.

Isospin ladder operators

The isospin ladder operators, analogous to the quantum mechanical angular momen-
tum ladder operators, defined as

T_=T1T,-iT, and T,=T +il,

have the effect of moving between the (27 + 1) states within an isospin multiplet,
as indicated in Figure 9.2. The action the ladder operators on a particular isospin
state are

Top(, 1) = VIU+1)— L+ 1)U, 5+ 1), (9.4)
T¢I, 1) = NIU+1)— (- )¢, ;- 1), 9.5)

where the coefficients were derived in Section 2.3.5. For an isospin multiplet with
total isospin /, the ladder operators have the effect of raising or lowering the third
component of isospin. The action of the ladder operators on the extreme states with
I; = +1 yield zero,

T_¢(,-I)=0 and T.¢, +I) =0.
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Therefore, the effects of the isospin ladder operators on the u- and d-quarks are

T.u=0, T,d=u, T_-u=d and 7T_-d=0.

9.3 Combining quarks into baryons
|

The strong interaction Hamiltonian does not distinguish between up- and down-
quarks, therefore in the limit where the up- and down-quark masses are the same,
physical predictions involving the strong interaction alone are symmetric under
unitary transformations in this space. The conserved observable quantities, corre-
sponding to the generators of this symmetry are /3 and /. Because I3 and [ are
conserved in strong interactions, the concept of isospin is useful in describing low-
energy hadron interactions. For example, isospin arguments can be used to explain
the observation that the decay rate for A* — pa® is twice that for A — nzn® (see
Problem 9.3). Here the concept of isospin will be used to construct the flavour
wavefunctions of baryons (qqq) and mesons (qq).

The rules for combining isospin for a system of two quarks are identical to those
for the addition of angular momentum. The third component of isospin is added as
a scalar and the total isospin is added as the magnitude of a vector. If two isospin
states ¢ (I“, Ig‘) and ¢ (Ib , Ié’ ) are combined, the resulting isospin state ¢ (1, I3) has

L=KE+I and |[I“-P|<I<|*+1|

These rules can be used to identify the possible isospin states formed from two
quarks (each of which can be either an up- or down-quark). The third component
of isospin is the scalar sum of /3 for the individual quarks, and hence the /3 assign-
ments of the four possible combinations of two light quarks are those of Figure 9.3.
The isospin assignments for the extreme states immediately can be identified as

w=¢(5.1)p(3.4) =00, +1) and dd=g¢(3.-3)e(s.-3)=¢0.-D).

This identification is unambiguous, since a state with /3 = +1 must have [ > 1
and the maximum total isospin for a two-quark state is / = 1. The quark combina-
tions ud and du, which both have I3 = 0, are not eigenstates of total isospin. The

dd ud, du uu
—e ® *—> /;
-1 0 +1

The /5 assignments for the four possible combinations of two up- or down-quarks. There are two states with
I; = 0 (indicated by the point and circle) ud and du.
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a1 A _(ud -
dd \IE(Ud + du) uu \IE(Ud du)
—e ® *—>/; @ ——>
-1 ~ 0 = +1 0
T, T,

The isospin eigenstates for the combination of two quarks.

ddu uud
1 1 a1 _ a1 _
ddd E(ud + du)d % (ud +du)u  uuu " (ud — du)d @(ud duju
> Iy ® —————e> /5

The /5 assignments of three-quark states built from the qq triplet and singlet states.

appropriate linear combination corresponding to the / = 1 state can be identified
using isospin ladder operators,

T_¢(1,+1) = V2¢(1,0) = T_(uu) = ud + du,
and thus
$(1,0) = %(ud + du).

The ¢ (0, 0) state can be identified as the linear combination of ud and du that is
orthogonal to ¢ (1, 0), from which

#(0,0) = %(ud — du). (9.6)

Acting on the I = 0 singlet state of (9.6) with either 7', or 7_ gives zero, confirming
that it is indeed the ¢ (0, 0) state, for example

7,45 (ud - du) = = (17 uld + u[T,d] - [7d]u - d[ T u])
= %(uu —uu) =0.

The four possible combinations of two isospin doublets therefore decomposes into
a triplet of isospin-1 states and a singlet isospin-0 state, as shown in Figure 9.4.
This decomposition can be written as 2® 2 = 3 @ 1. It should be noted that the
isospin-0 and isospin-1 states are physically different; the isospin-1 triplet is sym-
metric under interchange of the two quarks, whereas the isospin singlet is antisym-
metric.

The isospin states formed from three quarks can be obtained by adding an up-
or down-quark to the qq isospin singlet and triplet states of Figure 9.4. Since I3
adds as a scalar, the I3 assignments of the possible combinations are those shown
in Figure 9.5. The two states built from the / = 0 singlet will have total isospin
I = 1/2, whereas those constructed from the / = 1 triplet can have either I = 1/2
or I = 3/2. Of the six combinations formed from the triplet, the extreme ddd and
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uuu states with I3 = —3/2 and I3 = +3/2 uniquely can be identified as being part of
1sospin / = 3/2 multiplet. The other two I = 3/2 states can be identified using the
ladder operators. For example, the ¢ (% —%) state, which is a linear combination of

the ddu and %(ud + du)d states, can be obtained from the action of 7, on

¢(3.-3) = ddd,

from which
T.¢(3.-3) = V3¢ (3.-1) = T..(ddd) = [T d]dd + d[T'.d]d + dd[T,d]
= udd + dud + ddu,

and therefore

¢(3,-1) = 5 (udd + dud + ddu). 9.7)

From the repeated action of the ladder operators, the four isospin—% states, built
from the qq triplet, can be shown to be

¢(3.-3) = ddd, 9.8)
¢(3,—1) = J5(udd + dud + ddu), (9.9)
¢(% +%) = %(uud + udu + duu), (9.10)
$(3+3) = uuu. ©.11)

The two states obtained from the qq triplet with total isospin / = 1/2 are orthog-
onal to the I3 = +1/2 states of (9.9) and (9.10). Hence, the ¢(%, —%) state can be

identified as the linear combination of ddu and %(ud + du)d that is orthogonal to

the ¢ (%, —%) state of (9.9), giving

¢s (3.—%) = —z(2ddu - udd — dud), (9.12)
and similarly
(l - L - -
s |5 +2) = \/8(2uud udu — duu). (9.13)

The relative phases of (9.12) and (9.13) ensure that the ladder operators correctly
step between the two states. In addition, the two states constructed from the qq
isospin singlet of (9.6) are

bA (% —%) = %(udd — dud), 9.14)
¢a (3, +1) = J5(udu - duw). 9.15)
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ddd %(udd +dud + ddu) (udu + duu + uud) uuu

1
3

= % —e ° ° o>/ O
_3 1 1 3
2 2 "3 2
1
—J5(2ddu - udd - dud) ~z(2uud - duu - udu) 1 (udd - dud) 15 (udu - duu)
1
/= 5 ——————— o>/, &) —o———o>;
1 1 1 1
72 "2 2 *2

The three-quark ¢ (I, I5) states in SU(2) flavour symmetry. The eight combinations decompose into a sym-
metric quadruplet and two mixed symmetry doublets.

Hence, the eight combinations of three up- and down-quarks, uuu, uud, udu, udd,
duu, dud, ddu and ddd, have been grouped into an isospin—% quadruplet and two
isospin-% doublets, as shown in Figure 9.6. In terms of the SU(2) group structure
this can be expressed as

202@2=200CBe])=23)o(2e]) =4822,

where 2 ® 2 ® 2 represents the combinations of three quarks represented as isospin
doublets. The different isospin multiplets have different exchange symmetries. The
flavour states in the isospin—% quadruplet, (9.8)—(9.11), are symmetric under the
interchange of any two quarks. The isospin—% doublets are referred to as mixed sym-
metry states to reflect the symmetry under the interchange of the first two quarks,
but lack of overall exchange symmetry. The doublet states of (9.12) and (9.13),
labelled ¢g, are symmetric under the interchange of quarks 1 < 2, whereas the
doublet states of (9.14) and (9.15), labelled ¢4, are antisymmetric under the inter-
change of quarks 1 < 2. These two isospin doublets have no definite symmetry
under the interchange of quarks 1 <& 3 and 2 « 3.

9.3.1 Spin states of three quarks

Because the SU(2) algebra for combining spin-half is that same as that for isospin,
the possible spin wavefunctions of three quarks, denoted by y, are constructed in
the same manner. Hence the combination of three spin-half particles gives: a spin—%
quadruplet, with spin states

x(3,+3) =117, (9.16)
x(3.+5) = FATL+ 11T+ LD, (9.17)
x(3.-5) = FALT + 1L+ 1D, (9.18)
x(3.-3) =0l 019
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a mixed symmetry doublet which is symmetric under 1 & 2,

xs (3.-4) = - Ut -1 - 1), (9.20)
xs (5+4) = L@ L= 11 - 11D 9.21)
and a mixed symmetry doublet which is antisymmetric under 1 © 2,
xa(3.-3) = Law - n, 9.22)
xa(3.+3) = Bauw - um. 9.23)

9.4 Ground state baryon wavefunctions
|

There are eight possible isospin states for a system of three quarks and eight pos-
sible spin states, leading to a total of 64 possible combined flavour and spin states.
However, not all combinations satisfy the required fermion exchange symmetry
of the total wavefunction. In addition to spin and flavour components, the wave-
function for a qqq state also needs to describe the colour content and the spatial
wavefunction. The overall wavefunction for a bound qqq state, accounting for all
degrees of freedom, can be written

Y= ¢ﬂav0ur X spin f colour T]space- (9-24)

Because quarks are fermions, the overall wavefunction of (9.24) is required to be
antisymmetric under the interchange of any two of the quarks. For a system of
like fermions, for example uuu, this is simply a statement of the Pauli exclusion
principle. However, because of the assumed SU(2) flavour symmetry, when the
flavour wavefunction is included, the fermion exchange symmetry applies to the
wavefunction as a whole (the argument is given in the starred Addendum in Section
9.7 at the end of this chapter).

The requirement that the wavefunction of (9.24) is totally antisymmetric places
restrictions on the individual parts. In Chapter 10, it is shown that the colour wave-
function is necessarily totally antisymmetric. Here the discussion is restricted to
the L = 0 ground state baryons, in which there is no orbital angular momentum. In
this case, the quarks are described by £ = 0 s-waves. Since the exchange symmetry
of the orbital states is given by (—1)’, here the orbital wavefunction is symmetric
under the interchange of any two quarks. Consequently, for the L = 0 baryons the
combination &olour Mspace 18 antisymmetric under the interchange of any two quarks.
For the overall wavefunction to be antisymmetric, the combined flavour and spin
wavefunctions, @favour Xspin, Must be symmetric.

L = 0 baryons:  fayour Xspin = Symmetric.
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ddd %(ddu + dud + udd) %(uud +udu +duu) uuu
A~ AO At AT
— 90— 0 ——— 0> 13
1 1 3

3
2 2 2 *3

The flavour wavefunctions of the | = % light quark A-baryons, each of which has total spin's = 3.

The possible forms of the flavour and spin parts of the wavefunction are respec-
tively given by (9.8)—(9.15) and (9.16)—(9.23). There are two ways to construct a
totally symmetric combination of @gayour and xpin. Firstly, the totally symmetric
flavour wavefunctions of (9.8)—(9.11) can be combined with the totally symmetric
spin wavefunctions of (9.16)—(9.19) to give four spin-3, isospin—% baryons. These
are known as the A-baryons with the flavour wavefunctions shown in Figure 9.7.

The second way to construct a totally symmetric @favour X'spin Wavefunction is to
note that the combinations of mixed symmetry wavefunctions, ¢s ys and ¢4y 4, are
both symmetric under interchange of quarks 1 < 2. However, neither combination
on its own has a definite symmetry under the interchange of quarks 1 < 3 and
2 « 3. Nevertheless, it is easy to verify that the linear combination

U= <5(sxs + daxa) (9.25)

is symmetric under the interchange of any two quarks, as required. Here the two
possible flavour states correspond to the spin-half proton (uud) and neutron (ddu).
Therefore, from (9.25), the wavefunction for a spin-up proton can be identified as

IpT) = % [(bs (3.+3)xs (3 +3) + 64 (3. +3)xa (3, +%)]
= 5y5(2uud —udu — duw)2 71 = 1T = I11) + 55 (udu — duw)(141 = U17),

which when written out in full is

IpT) = ﬁ(ZUTUle—uTUldT—UlUTdT

+2ufdluT—ufldtul-uldTu?l
+2dlutut—-dTuful—-dTulu?. (9.26)

The fully antisymmetric version of the proton wavefunction would include the anti-
symmetric colour wavefunction, which itself has six terms, giving a wavefunction
with a total of 54 terms with different combinations of flavour, spin and colour. In
practice, the wavefunction of (9.26) is sufficient to calculate the physical properties
of the proton.
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9.5 Isospin representation of antiquarks
|

In the above description of SU(2) flavour symmetry, the up- and down-quarks were
placed in an isospin doublet,
_{u
q= d .

A general SU(2) transformation of the quark doublet, ¢ — q’ = Uq, can be written

Rl o

where a and b are complex numbers which satisfy aa™ + bb* = 1. In Section 4.7.5,
the charge conjugation operation was identified as ¢’ = Cy = iy*y*. Hence taking
the complex conjugate of (9.27) gives the transformation properties of the flavour
part of the antiquark wavefunctions

HIREHE A S

In SU(2) it is possible to place the antiquarks in a doublet that transforms in the
same way as the quarks, ¢ — @' = Uq. If the antiquark doublet is written as

G e

(g) - 5'g and (g ) =59,

Equation (9.28) can be written

then since

S—lq/ — U*S_lq

= q=SUs'q.
Using the definition of the S of (9.29),

voy [0=1)(a" b*\( O1 a b
SUST = = =,
1 o)\-ba)l-10) (-b*a

and therefore, as desired,
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The isospin representation of d and u quarks and dandd antiquarks.

Hence, by placing the antiquarks in an SU(2) doublet defined by

the antiquarks transform in exactly the same manner as the quarks. The ordering of
the d and U in the doublet and the minus sign in front of the d, ensure that quarks and
antiquarks behave in the same way under SU(2) flavour transformations and that
physical predictions are invariant under the simultaneous transformations of the
formu < d and U « d. The I3 assignments of the quark and antiquark doublets
are shown in Figure 9.8. The effect of the isospin ladder operators on the antiquark
doublet can be seen to be

T.u=-d, T,d=0, T-u=0 and 7.d=-u

It is important to note that, in general, it is not possible to place the quarks and
antiquarks in the same representation; this is a feature SU(2). It cannot be applied
to the SU(3) flavour symmetry of Section 9.6.

Meson states

A meson is a bound state of a quark and an antiquark. In terms of isospin, the
four possible states formed from up- and down-quarks/antiquarks can be expressed
as the combination of an SU(2) quark doublet and an SU(2) antiquark doublet.
Using the isospin assignments of Figure 9.8, the du state immediately can be iden-
tified as the qq isospin state, ¢ (1, —1). The two other members of the isospin triplet
can be identified by application of the isospin ladder operator 7T, leading to

¢(1,-1) = du,
¢(1,0) = —5(ull - dd),
#(1,+1) = —ud.

The isospin singlet, which must be orthogonal to the ¢ (1, 0) state, is therefore
¢ (0,0) = %(uﬁ+dﬁ).

This decomposition into an isospin triplet and an isospin singlet, shown in
Figure 9.9, is expressed as 2 ® 2 = 3 @ 1, where the 2 is the isospin representa-
tion of the quark doublet and the 2 is the isospin representation of an antiquark
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The qq isospin triplet and singlet states.

doublet (in the language of group theory the quark doublet is a fundamental repre-
sentation of SU(2) and the antiquark doublet is the conjugate representation). The
action of the isospin raising and lowering operators on the ¢ (0, 0) state both give
zero, confirming that it is indeed a singlet state.

9.6 SU(3) flavour symmetry

The SU(2) flavour symmetry described above is almost exact because the difference
in the masses of the up- and down-quarks is small and the Coulomb interaction
represents a relatively small contribution to the overall Hamiltonian compared to
the strong interaction. It is possible to extend the flavour symmetry to include the
strange quark. The strong interaction part of the Hamiltonian of (9.2) treats all
quarks equally and therefore possesses an exact uds flavour symmetry. However,
since the mass of the strange quark is different from the masses of the up- and
down-quarks, the overall Hamiltonian is not flavour symmetric. Nevertheless, the
difference between mg and my,q, which is of the order 100 MeV, is relatively small
compared to the typical binding energies of baryons, which are of order 1 GeV. It is
therefore possible to proceed as if the overall Hamiltonian possessed a uds flavour
symmetry. However, the results based on this assumption should be treated with
care as, in reality, the symmetry is only approximate.

The assumed uds flavour symmetry can be expressed by a unitary transformation
in flavour space

u’ u Uin Ui Uz \(u
d |=0|d|=|Uy Up Ups || d
s’ S Usi Uz Usz )\ s

In general, a 3 X 3 matrix can be written in terms of nine complex numbers, or
equivalently 18 real parameters. There are nine constraints from requirement of
unitarity, UTU = I. Therefore U can be expressed in terms of nine linearly inde-
pendent 3 X 3 matrices. As before, one of these matrices is the identity matrix
multiplied by a complex phase and is not relevant to the discussion of transforma-
tions between different flavour states. The remaining eight matrices form an SU(3)
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group and can be expressed in terms of the eight independent Hermitian generators
T; such that the general SU(3) flavour transformation can be expressed as

N
A

U — ei(}"T
The eight generators are written in terms of eight A-matrices with

L1
T=-2,
2

where the matrices act on the SU(3) representations of the u, d and s quarks

1 0 0
u:[O], dz(l) and s:(OJ. (9.30)
0 0 1

The SU(3) uds flavour symmetry contains the subgroup of SU(2) u « d flavour
symmetry. Hence, three of the A-matrices correspond to the SU(2) ud isospin sym-
metry and have the Pauli spin-matrices in the top left 2 X 2 block of the 3 X 3 matrix
with all other entries zero,

010 0-i0 1 00
/11: 100, /12: i 00 and /l3= 0-10/{.
000 0 00 0 00
The third component of isospin is now written in terms of the operator
T = 33,
such that
f3u = +%u, f3d = —%d and f3S =0.

As before, isospin lowering and raising operators are defined as 7. = %(/11 +idy).

The remaining A-matrices can be identified by realising that the SU(3) uds flavour
symmetry also contains the subgroups of SU(2) u < s and SU(2) d < s flavour
symmetries, both of which can also be expressed in terms of the Pauli spin-matrices.
The corresponding 3 X 3 A-matrixes for the u < s symmetry are

001 00 —i 10 0
A4=]1000, 45=|00 O] and Ax=[{00 O],
100 i0 0 00 -1

and for the d < s symmetry they are

000 00 0 00 O
=001, A47=|00-i| and Ay=|01 O].

010 0i 0 00 -1
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Of the nine A-matrices identified above, only eight are independent; one of the
three diagonal matrices, A3, Ay and Ay, can be expressed in terms of the other two.
Because the u < d symmetry is nearly exact, it is natural to retain A3 as one of the
eight generators of the SU(3) flavour symmetry. The final generator is chosen as
the linear combination of Ax and Ay that treats u and d quarks symmetrically

00 O 10 0 10 0
_ 1 1 - L
o T R

The eight matrices used to represent the generators of the SU(3) symmetry, known
as the Gell-Mann matrices, are therefore

010 001 000
L=[100|, 4=[000]|, 4=]001
000 100 010
0-i0 00 —i 00 0
L=i 00, 2s=[00 0|, =]00 —i (9.31)
0 00 i0 0 0i 0
1 00 10 0
@:O—H)“@:%(H 0].
0 00 00 -2

9.6.1 SU(3) flavour states

For the case of SU(2) flavour symmetry there are three Hermitian generators, each
of which corresponds to an observable quantity. However, since the generators do
not commute, they correspond to a set of incompatible variables. Consequently
SU(2) states were defined in terms of the eigenstates of the third component of
isospin 73 and the total isospin 72 = le + T22 + T32. In SU(3) there is an analogue of
total isospin, which for the fundamental representation of the quarks can be written

8 8 4100
ﬁ=2ﬁ232ﬁ=§010.

i=1 i=1 001

Of the eight SU(3) generators, only 73 = %/13 and T'g = %/lg commute and therefore
describe compatible observable quantities. Hence, in addition to the analogue of the
total isospin, SU(3) states are described in terms of the eigenstates of the A3 and Ag
matrices. The corresponding quantum numbers are the third component of isospin
and the flavour hypercharge defined by the operators

A

T3 =543 and ?ZL/lg.

NI—
s
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Isospin and hypercharge in SU(3) flavour symmetry for the quarks and antiquarks.

The quarks are the fundamental “3” representation of the SU(3) flavour symmetry.
Using the definitions of the quark states of (9.30) it is easy to verify that the isospin
and hypercharge assignments of the u, d and s quarks are

T3u = +%u and Yu= +%u,
Tsd=-3d and Yd=+1d,

T5s=0 and Ys= —%s.

The flavour content of a state is uniquely identified by Iz = ny — nqg and ¥ =

%(nu + ng — 2ny), where ny, nq and ng are the respective numbers of up-, down- and

strange quarks. The /3 and Y quantum numbers of the antiquarks have the opposite

signs compared to the quarks and they form a 3 multiplet, as shown in Figure 9.10.

Whilst the Gell-Mann A3 and Ag matrices label the SU(3) states, the six remain-
ing A-matrices can be used to define ladder operators,

T, = 5(4 £id),
Vi = 3(4 £ids),

U. = 36 £idy),

which respectively step along the d <> u, s & uand d < s directions. From the
matrix representations of these ladder operators it is straightforward to verify that

Vis=+u, Vou=+s, U,s=+d, U_d=+s, T.d=+u and T_u = +d,

with all other combinations giving zero. In SU(3) flavour symmetry it is not pos-
sible to express the antiquarks as a triplet which transforms in the same way as
the quark triplet. Nevertheless, following the arguments given in Section 9.5, the
effect of a single ladder operator on an antiquark state must reproduce that from
the corresponding SU(2) subgroup, such that the states can be obtained from

A —

_ i _ A

V.u=-5, V.s=-u, U,d=-s5, Us-= —H, T.u= —d and 7_d = -u.



227

9.6 SU(3) flavour symmetry

SU(3) isospin and hypercharge assignments of the nine possible qq combinations.

9.6.2 The light mesons

In the discussion of SU(2) flavour symmetry, the third component of isospin is an
additive quantum number, in analogy with angular momentum. In SU(3) flavour
symmetry, both /5 and Y are additive quantum numbers, which together specify the
flavour content of a state. The light meson (qq) states, formed from combinations
of u, d and s quarks/antiquarks, can be constructed using this additive property to
identify the extreme states within an SU(3) multiplet. Having identified the extreme
states, the ladder operators can be used to obtain the full multiplet structure. The
I3 and Y values for all nine possible combinations of a light quark and a light
antiquark are shown in Figure 9.11. The pattern of states can be obtained quickly
by drawing triangles corresponding to the antiquark multiplet centred on each of
the three positions in the original quark multiplet (this is equivalent to adding the
I3 and Y values for all nine combinations).

The states around the edge of the multiplet are uniquely defined in terms of
their flavour content. The three physical states with I3 = Y = 0 will be lin-
ear combinations of uu, dd and ss, however, they are not necessarily part of the
same multiplet. The I3 = Y = 0 states which are in the same multiplet as the
{us, u(_l, du, ds, su, sa} states can be obtained using the ladder operators, as indi-
cated in Figure 9.12,

T.|du) = [utl) — |dd) and T_[ud) = |dd) — [uT), (9.32)
V,|su) = [ull) — |sS) and V_[uS) = |sS) — |uu), (9.33)
U,lsd) = |[dd) — |ss) and U_|dsS) = |ss) — |dd). (9.34)

Of these six states, only two are linearly independent and therefore, of the three
physical Iz = Y = O states, it can be concluded that one must be in a different
SU(3) multiplet. Hence, for the assumed SU(3) flavour symmetry, the qq flavour
states are decomposed into an octet and a singlet. The singlet state s is the linear
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SU(3) flavour qq multiplets. The two states at the centre of the octet are linear combinations of |uu), |da>
and [ss) which are orthogonal to the singlet state.

combination of ull, dd and ss that is orthogonal to the states of (9.32)—(9.34) and is
readily identified as

— 1 q 3
lps) = 5 (uu +dd +ss). (9.35)
The application of the SU(3) ladder operators on |y ) all give zero, for example

T.ps = %([nu]ﬁ +u[T,0] + [T.d]d + d[T.d] + [T4s]s + s[T+3])
—_ 1 _ua 3 _
_\5(0 ud+ud+0+0+0)=0,

confirming that |5 ) is the singlet state.

Figure 9.13 shows the multiplet structure for combining a quark and an antiquark
in SU(3) flavour symmetry. In the language of group theory, the combination of a
quark 3 representation and an antiquark 3 representation decomposes into an octet
and a singlet, 3® 3 = 8 ® 1. It worth pausing to consider the physical significance
of the singlet state. For spin, the corresponding singlet state for the combination of
two spin-half states, |s, m) = |0, 0), is a state of zero angular momentum that carries
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The nine £ = 0, s = 0 pseudoscalar mesons and nine £ = 0, s = 1vector mesons formed from the light
quarks, plotted in terms of 5 and Y.

no information about the spins of its constituent particles; it could just have been
formed from two scalar particles. Similarly, the SU(3) flavour singlet |5 ) can be
thought of as a “flavourless” state, carrying no information about the flavours of its
constituents.

The L = 0 mesons

In general, the wavefunction for a meson can be written in terms of four compo-
nents,

Y(meson) = ®favour X spin Ecolour Mspace-

Because quarks and antiquarks are distinguishable, there is no restriction on the
exchange symmetry of the wavefunction for a qq state. For each flavour state, there
are two possible spin states, s = 0 and s = 1. For the lightest mesons, which
have zero orbital angular momentum (¢ = 0), the total angular momentum J is
determined by the spin state alone. Consequently the lightest mesons divide into
the J = O pseudoscalar mesons and the J = 1 (the vector mesons), respectively
with s = 0 and s = 1. Since quarks and antiquarks have opposite intrinsic parities,
the overall parity is given by

P(qQ) = P(@QP@ x (=1)' = (+D(=1)(=1)",

where (—1)’ is the symmetry of the orbital wavefunction. Hence, the lightest mesons
(with ¢ = 0) have odd intrinsic parities. In Chapter 10, it is shown that there is only
one possible colour wavefunction for a bound qq system. Therefore, there are nine
light J¥ = 0~ pseudoscalar mesons and nine J* = 1~ light vector mesons, corre-
sponding to nine possible flavour states each with two possible spin states.

Figure 9.14 shows the observed ¢ = 0 meson states plotted in terms of /3 and Y.
The ni°, n and 1’ can be associated with the two I3 = Y = 0 octet states and the
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I; = Y = 0 singlet state of Figure 9.13. The n’, which has an anomalously large
mass, can be identified as the singlet state with wavefunction

NPV 3 -
m) = ﬁ(uu+dd+ss).

If the SU(3) flavour symmetry were exact, the two I3 = ¥ = 0 octet states would
have exactly the same mass and the flavour wavefunctions could be taken to be
any two orthogonal linear combinations of (9.32)—(9.34). However, because mg >
my;4, the SU(3) flavour symmetry is only approximate and the choice of the flavour
wavefunctions for the observed states will lead to different physical predictions.
Experimentally, the lightest pseudoscalar mesons, namely the nt*, ni¥ and ™, are
observed to have approximately the same mass of about 140 MeV. Since the wt*
and nt~ correspond to the ud and du states, the ¥ can be identified as

¥y = %(uﬁ —dd).

The final /3 = Y = 0 pseudoscalar meson, the 1), is the linear combination of uu, dd
and ss that is orthogonal to both the |n’) and the |7°) states,

)y = %(uﬁ +dd — 2s8).

In the case of the vector mesons, the predictions of the SU(3) flavour symmetry
prove to be less useful; the physical I3 = Y = 0 states are mixtures of the octet and
singlet states. Experimentally, the observed states are found to correspond to

p") = 5(ull - dd),
o) ~ \Lﬁ(uﬁ +dd),
) =~ ss.

9.6.3 Meson masses

The measured masses of the £ = 0 pseudoscalar and vector mesons are listed in
Table 9.1. If the SU(3) flavour symmetry were exact, all the states in pseudoscalar
meson octet would have the same mass. The observed mass differences can be
ascribed to the fact that the strange quark is more massive than the up- and down-
quarks. However, this does not explain why the vector mesons are more massive
than their pseudoscalar counterparts. For example, the flavour wavefunctions for
the it and the p states are the same, but their masses are very different. The only
difference between the pseudoscalar and vector mesons is the spin wavefunction.
Therefore, the different masses of the w and p mesons can be attributed to a spin—
spin interaction.
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Table 9.1 Thel = 0 pseudoscalar and vector meson masses.

Pseudoscalar mesons Vector mesons
i 135 MeV p° 775 MeV
T 140 MeV p* 775 MeV
K* 494 MeV K 892 MeV
K, K° 498 MeV K*/K*° 896 MeV
N 548 MeV 0} 783 MeV
n 958 MeV [0) 1020 MeV

In QED, the potential energy between two magnetic dipoles contains a term pro-
portional to scalar product of the two dipole moments, g, - u ;. For two Dirac parti-
cles of masses m; and m, this corresponds to a potential energy term of the form

e a
SjOC

m; mim;

U oC iS, . S,' . S Jjs
mi

where « is the fine structure constant. This QED interaction term, which contributes
to the hyperfine splitting of the energy levels of the hydrogen atom, is relatively
small. In Chapter 10 it is shown that, apart from a numerical constant that accounts
for colour, the QCD vertex has the same form as that of QED. Therefore, there will
be a corresponding QCD “‘chromomagnetic” spin—spin interaction giving a term in
the qq potential of the form

«
UocS

mim; S;-S E

where ag is the coupling constant of QCD. Since @g ~ 1 is much greater than
a ~ 1/137, the chromomagnetic spin—spin interaction term is relatively large and
plays an important role in determining the meson masses. For an £ = 0 meson
formed from a quark and an antiquark with masses m; and m,, the meson mass can
be written in terms of the constituent quark masses and the expectation value of the
chromomagnetic spin—spin interaction

m(qiqp) = my +mp + (S1-S,2), (9.36)

min

where the parameter A can be determined from experiment.
The scalar product S; -+ S; in (9.36) can be obtained by writing the total spin as
the vector sum, S = S| + S, and squaring to give

S =82+28;-S,+8S3,
which implies that
Si+S; = 1[8-8 - 8%
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Therefore, the expectation value of S; - S, can be written as

1059 = [(8) - (59) - (5)

= %[s(s+ )= s1(s1 +1) = s2(s2 + D],

where s; = 55 = % and s is the total spin of the qq system. For the pseudoscalar
mesons s = 0 and for the vector mesons s = 1 and hence (9.36) can be written

Pseudoscalar mesons (s = 0):  mp =my + mp — , (9.37)

4m1 my

Vector mesons (s = 1): my =my +my +

9.38

4m1m2 ( )
Hence the masses of the spin-0 pseudoscalar mesons are predicted to be lower
than the masses of the spin-1 vector mesons. The observed meson masses listed in
Table 9.1 are in good agreement with the predictions of the meson mass formulae
of (9.37) and (9.38) with the parameters

mg =my =0307GeV, ms=0490GeV and A =0.06GeV>. (9.39)

The one exception is the 1), where the predicted mass of 355 MeV differs signifi-
cantly from the anomalously large observed value of 958 MeV. The reason for this
discrepancy is attributed to the n" being a “flavourless” singlet state that can, in
principle, mix with possible purely gluonic flavourless bound states.

9.6.4 The L = 0uds baryons

The ground states of the (qqq) baryons are states with no orbital angular momen-
tum in the system. Assuming SU(3) flavour symmetry, the wavefunctions for these
L = 0 baryons can be obtained by first considering the multiplet structure for the
combination of two quarks and then adding the third. This is essentially a repeat
of the process used to derive the proton wavefunction in Section 9.4. Here, we will
concentrate on the multiplet structure rather than the wavefunctions themselves.

Since I3 and Y are additive quantum numbers, the (I3, Y) values of the combina-
tion of two quarks in SU(3) are just the sums of the individual values. The multiplet
structure for the combination of two quarks can be obtained by starting at one of
the extreme SU(2) qq states and applying the SU(3) ladder operators. In this way it
can be shown that in SU(3) flavour symmetry, the combination of two quarks leads
to a symmetric sextet of states and an antisymmetric triplet of states, as shown in
Figure 9.15. Since the triplet has the same (13, Y) states as the SU(3) representation
of a single antiquark, the multiplet structure arising from the combination of two
quarks can be written as 3®3 = 6 ® 3.

The multiplet structure for the 27 possible flavour combinations in the qqq sys-
tem is then obtained by adding a quark triplet to each of the sextet and triplet of
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Figure 9.15. In terms of the group structure, this can be written 30383 = (683)®3
as indicated in Figure 9.16a. Adding an additional quark to the sextet, gives a decu-
plet of totally symmetric states and a mixed symmetry octet, as shown in Fig-
ure 9.16b, where the states without strange quarks are exactly those identified in
Section 9.4. This 10 @ 8 multiplet structure can be verified by repeated applica-
tion of the SU(3) ladder operators to the SU(2) states of (9.8)—(9.11) and to the
states of (9.12)—(9.13) to obtain respectively the decuplet and the mixed symme-
try octet.

The second set of qqq flavour states are obtained by adding a quark to the qq
triplet (3). In terms of the multiplet structure, this is the same as combining the
SU(3) representation of a quark and antiquark (3 ® 3), giving a mixed symmetry
octet and a fotally antisymmetric singlet state, as indicated in Figure 9.16c. The
wavefunctions for this octet can be obtained from the corresponding SU(2) states
of (9.14)—(9.15) using the SU(3) ladder operators. Hence, 26 of the possible states
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(10 + 8 + 8) can be obtained from the SU(2) qqq states using ladder operators. The
final state, which must be in a singlet, is

lys) = %(uds — usd + dsu — dus + sud — sdu). (9.40)

It is straightforward to verity that this is the singlet state by showing that the action
of all the SU(3) ladder operators give zero, for example

T+|¢/s> = %(uus —usu + usu — uus + suu — suu) = 0.

In summary, the combination of three quarks in SU(3) flavour symmetry gives a
symmetric decuplet, two mixed symmetry octets and a totally antisymmetric sin-
glet state,

3033=3Q06®3)=1008a8a 1.

The existence of the singlet state will have important consequences when it comes
to the discussion of the SU(3) colour symmetry of QCD.

The baryon wavefunctions are obtained by combining the SU(3) flavour wave-
functions with the spin wavefunctions of Section 9.3.1, respecting the requirement
that the overall baryon wavefunction has to be antisymmetric under the exchange
of any two of the quarks. Since the colour wavefunction is always antisymmetric
and the ¢ = 0 spatial wavefunction is symmetric, baryon states can be formed from
combinations of spin and flavour wavefunctions which are totally symmetric under
the interchange of any two quarks. This can be achieved in two ways. Firstly, a sym-
metric spin—% wavefunction can be combined with the symmetric SU(3) flavour
decuplet to give ten spin—% baryons (including the A-particles). Secondly, as in
(9.25), the mixed symmetry flavour octet states can be combined with the mixed
symmetry spin states to give a spin—% octet (including the proton and neutron). It is
not possible to construct a totally symmetric flavour X spin wavefunction from the
flavour singlet of (9.40) because there is no corresponding totally antisymmetric
spin state formed from the combination three spin-half particles. The experimen-
tally observed L = 0 baryons fit neatly into this SU(3) flavour symmetry prediction
of an octet of spin—% states and a decuplet of spin—% states, as shown in Figure 9.17.

Baryon masses

If the SU(3) flavour symmetry were exact, the masses of all the baryons within
the octet would be the same, as would the masses of all the baryons within the
decuplet. Because the strange-quark mass is greater than that of the up- and down-
quarks, this is not the case. The measured masses of the L = 0 baryons are listed
in Table 9.2. The patterns of masses within a multiplet largely reflects the number
of strange quarks in the state, whereas the difference between the masses of the
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Table 9.2 Measured masses and number of strange quarks for the L = 0

light baryons.
s quarks Octet Decuplet
0 p,n 940 MeV A 1230 MeV
%, 1190 MeV 2P 1385 MeV
1 A 1120 MeV
2 o) 1320 MeV g* 1533 MeV
3 Q 1670 MeV
1t 3"
JP — 3 JP =5
n(ddu) p(uud) A~ (ddd) A% (ddu) A* (duu) AT (uuu)
[ ZETETTRIERS AT . . .................... @ --ereennefeeeennnns @ -eeeeeeee e .
Y~ (dds) 30 (uds) >* (uus) Y+ (dds) >0 (uds) > (uus)
——
% A(uds)
f— ‘ --------- ° =+ (ssd) 0 ¢ = (ssu)
=" (ssd) 3

The observed octet and decuplet of light baryon states.

octet and decuplet states is due to the chromomagnetic spin—spin interactions of the
individual quarks. Following the argument presented in Section 9.6.3, the L = 0
baryon mass formula is

(S1-S2) N (S1-8S3) N (S2+S3)
mimy mims nipms

), (9.41)

m(q1qa2q3) = my + my + m3 + A'(

where Si, S, and S3 are the spin vectors of the three quarks. This expression is
found to give good agreement with the observed baryon masses using

myg = my = 0.365GeV, mg=0540GeV and A’ = 0.026GeV>.

It is important to note that the quark masses needed to explain the observed
baryon masses are about 50 MeV higher than those used to describe the meson
masses, as given in (9.39). Furthermore, they are very different from the funda-
mental up- and down-quark masses, known as the current masses, which are just
a few MeV. The quark masses that enter the meson and baryon mass formulae
are the constituent masses, which can be thought of as the effective masses of the
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quarks as they move within and interact with the QCD potential inside baryons and
mesons. Since the QCD environments within baryons and mesons will be differ-
ent, it should not be a surprise that the constituent masses are different for baryons
and mesons. This distinction between current and constituent quark masses implies
that only 1% of the mass of a proton is attributable to the masses of the quarks, the
remainder arises from the energy associated with the internal QCD gluon field.

9.6.5 Baryon magnetic moments

In Chapter 7 it was seen that the magnetic moment of the proton differs from
that expected for a point-like Dirac fermion. The experimentally measured val-
ues of the anomalous magnetic moments of the proton and neutron are 2.792 uy
and —1.913 uy respectively, where wy is the nuclear magneton defined as

eh
HN = 57—

2my,
The origin of the proton and neutron anomalous magnetic moments can be
explained in terms of the magnetic moments of the individual quarks and the
baryon wavefunctions derived above.

Since quarks are fundamental Dirac fermions, the operators for the total mag-
netic moment and z-component of the magnetic moment are

. N R e A
A=0—S and f[,=0-S..
m m

For spin-up (m; = +%) quarks, the expectation values of the z-component of the
magnetic moment of the up- and down-quarks are

. eh 2m

pa =l ut) = (+3) - = +3u. (9.42)
R eh m

Ha = @TI1dD) = (=5) 3, = =3, oaw (9.43)

The corresponding expressions for the spin-down states are

ullpzlul) =—py and (dl|a;1d]l) = —uq.

The total magnetic moment of a baryon is the vector sum of the magnetic moments
of the three constituent quarks

A A(l), A2, AB
i= i+ @ 4 p®),

where i'”) is the magnetic moment operator which acts on the ith quark. Therefore,
the magnetic moment of the proton can be written

pp =iy = A" + 28 + 2P p . (9.44)
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The order that the quarks appear in the proton wavefunction does not affect the
calculation of the magnetic moment and it is sufficient to write

p1) = Sz(uTutdl-utuldt-ulutd?),

and thus (9.44) can be written as

tp = £{Qututdl-utuldt—ulufdD|ilulutdl-utuldT-ulutd D),
where [i, = /:é” + ﬁ?) + ,Et?). Because of the orthogonality of the quark flavour and
spin states, for example (u TuTd | |[uluTdT) = 0, the expression for the proton

magnetic moment reduces to
pp =g ututdl|flututd])+ ¢ Tuld?|alutuld?)
+¢(uluTd g lulutd?). (9.45)

Equation (9.45) can be evaluated using

feluTy = +uyfut) and  felul) = —pylul),

fAdT) = +paldT) and  fild]) = —pqldl),
giving

Hp = 2 (uy + pu — fa) + & (ttu — ptu + fa) + & (—fta + Hu + Ha) -

Therefore, the quark model prediction for the magnetic moment of the proton is

4 1
Hp = 3Hu — 3Hd-
The prediction for the magnetic moment of the neutron can be written down by
replacing u — d and vice versa,

Hn = 3Ha — 5Hu.

Assuming that m, ~ myq, the relations of (9.42) and (9.43) imply that u, = —2ug4.
Consequently, the ratio of the proton and neutron magnetic moments is predicted
to be

@_4ﬂu_ﬂd: 3

pn Apa—p 2

which is in reasonable agreement with the experimentally measured value of —1.46.
The best agreement between the quark model predictions and the measured values
of the magnetic moments of the L = 0 baryons is obtained with

my = 0.338GeV, mgq=0.322GeV and ms =0.510GeV.

Using these values in (9.42) and (9.43) gives uy = +1.85uy and pg = —0.97uy,
reproducing the observed values of the proton and neutron magnetic moments.
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9.6.6 Final words on SU(3) flavour symmetry

Whilst the SU(3) flavour symmetry is only approximate, it is able to account for
the observed states of the L = 0 mesons and baryons. Furthermore, the hadron
wavefunctions derived in the context of SU(3) flavour symmetry can be used to
obtain reasonable predictions for baryon and meson masses and the baryon mag-
netic moments. If anything, it is perhaps surprising that the predictions from SU(3)
flavour symmetry give such reasonable results. After all, the SU(3) flavour symme-
try can be only approximate because the mass of the strange quark is about 0.1 GeV
greater than the masses of the up- and down-quarks, although this mass difference
is relatively small compared to the typical QCD binding energy which is of order
1 GeV. A further issue with the static quark model is that the hadronic states have
been treated as bound states of valence quarks, whereas from the discussion of deep
inelastic scattering it is clear that hadrons are far more complex. To some extent,
these additional degrees of freedom are accounted for in the constituent masses
of the quarks used to obtain the predictions for meson and baryon masses and the
baryon magnetic moments. These masses are much larger than the current masses
listed in Table 1.1; most of the mass of the hadrons originates from of the energy
of the strongly interacting sea of virtual quarks and gluons.

The above discussion was restricted to the approximate SU(3) flavour symme-
try of the three light quarks. It is tempting to extend this treatment to an SU(4)
flavour symmetry including the charm quark. However, this makes little sense; the
difference between the mass of the charm quark and the light quarks is greater than
1 GeV, which is the typical QCD binding energies of hadrons. For this reason, the
Hamiltonian for the hadronic states does not possess even an approximate SU(4)
flavour symmetry.

Summary
|

In this chapter a number of important concepts were introduced. Symmetries of
the Hamiltonian were associated with unitary transformations expressed in terms
of Hermitian generators

Ua) = exp (i - G).

In this way, each symmetry of the Hamiltonian is associated with an observable
conserved quantity.

The flavour symmetry of the static quark model was used to illustrate these
ideas and to introduce the SU(2) and SU(3) groups. Based on symmetry arguments
alone, it was possible to derive static wavefunctions for the mesons and baryons
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formed from u, d and s quarks. The static quark model was shown to provide a
good description of the masses and magnetic moments of the light hadrons. In the
following chapter, these ideas will be extended to the abstract SU(3) local gauge
symmetry that lies at the heart of QCD.

9.7 *Addendum: Flavour symmetry revisited
|

In the derivation of the proton wavefunction, given in Section 9.4, the overall
wavefunction,

¥ = Pfavour Xspin &colour Mspaces

was required to be antisymmetric. For cases where the flavour wavefunction
describes like particles, for example ¢gavour = uuu, the requirement of an over-
all antisymmetric wavefunction is just an expression of Pauli exclusion principle,
which arises from the spin-statistics of fermions. It is less obvious why this should
also apply to the more general case with different quark flavours; the reasoning is
subtle.

In quantum field theory an up-quark state with spin r is expressed by the action
of the creation operator air on the vacuum state,

lut) = al,loy,

where the + sign refers to the creation of the I3 = +% state labelling an up-quark

in SU(2) flavour symmetry. The creation operator air satisfies the requirements of

fermion spin statistics, which can be written as the anticommutator
{al,.al,} =0,
which implies
T al0y=0 9.46
a+ra+r| > - Y ( . )

and therefore two identical particles can not be produced in the same state. For the
SU(2) isospin flavour symmetry T_lut) = [d1), which implies

T_d',10) = d',|0),

¥

where a_, is the creation operator for a spin-up down quark with /3 = —%. There-

fore one can write f_air = air. Applying the isospin lowering operator to (9.46)
gives

T_(a!,al )0y =a' a0y +a’,a’ |0y =0,



240

Symmetries and the quark model

and hence

{al,.a',}=0.

Therefore, within the assumed SU(2) flavour symmetry, the creation operators for
up- and down-quarks satisfy the same anticommutation relations as the creation
operators for two up-quarks or two down-quarks. Consequently, within the SU(2)
or SU(3) flavour symmetries, the requirement that the overall wavefunction is anti-
symmetric applies equally to states where the flavours of the quarks are different.

Problems

9.1

9.2

93

9.4

9.5

9.6

9.7

By writing down the general term in the binomial expansion of

.I n
(1+i—a-G) s
n

n
U(@) = lim (1 + i%a . G) = exp (i - G).

show that

n—o0

For an infinitesimal rotation about the z-axis through an angle e show that
0=1-ie,
where J, is the angular momentum operator J, = XPy — Ypy.

By considering the isospin states, show that the rates for the following strong interaction decays occur in the
ratios

[(A~ — an):T(A" — ap): T(A" — nn) : T(AY — xt™n):
[(AT - a’p):TA™ - a™p)=3:1:2:1:2:3.

If quarks and antiquarks were spin-zero particles, what would be the multiplicity of the L = 0 multiplet(s).
Remember that the overall wavefunction for bosons must be symmetric under particle exchange.

The neutral vector mesons can decay leptonically through a virtual photon, for example by V(qq) — v —
e*e™. The matrix element for this decay is proportional to (z/xl@q [y, where i is the meson flavour wavefunc-

tionand @q is an operator that is proportional to the quark charge. Neglecting the relatively small differences in
phase space, show that

I’ »efe):T(w—ee): T(p—>ee)~9:1:2

Using the meson mass formulae of (9.37) and (9.38), obtain predictions for the masses of the t*, 7%, ), 1y’,
%, p*, w and ¢. Compare the values obtained to the experimental values listed in Table 9.1.

Compare the experimentally measured values of the masses of the J* = %+ baryons, given in Table 9.2, with

the predictions of (9.41). You will need to consider the combined spin of any two quarks in a spin—% baryon
state.



